From Wikipedia Defn:
OpenGL (Open Graphics Library)is a standard specification defining a cross-language, cross-platform API for writing applications that produce 2D and 3D computer graphics. The interface consists of over 250 different function calls which can be used to draw complex three-dimensional scenes from simple primitives. OpenGL was developed by Silicon Graphics Inc. (SGI) in 1992[3] and is widely used in CAD, virtual reality, scientific visualization, information visualization, and flight simulation. It is also used in video games, where it competes with Direct3D on Microsoft Windows platforms (see OpenGL vs. Direct3D). OpenGL is managed by the non-profit technology consortium Khronos Group.
Most Widely Adopted Graphics Standard
OpenGL (Open Graphics Library)is a standard specification defining a cross-language, cross-platform API for writing applications that produce 2D and 3D computer graphics. The interface consists of over 250 different function calls which can be used to draw complex three-dimensional scenes from simple primitives. OpenGL was developed by Silicon Graphics Inc. (SGI) in 1992[3] and is widely used in CAD, virtual reality, scientific visualization, information visualization, and flight simulation. It is also used in video games, where it competes with Direct3D on Microsoft Windows platforms (see OpenGL vs. Direct3D). OpenGL is managed by the non-profit technology consortium Khronos Group.
Most Widely Adopted Graphics Standard
OpenGL is the premier environment for developing portable, interactive 2D and 3D graphics applications. Since its introduction in 1992, OpenGL has become the industry's most widely used and supported 2D and 3D graphics application programming interface (API), bringing thousands of applications to a wide variety of computer platforms. OpenGL fosters innovation and speeds application development by incorporating a broad set of rendering, texture mapping, special effects, and other powerful visualization functions. Developers can leverage the power of OpenGL across all popular desktop and workstation platforms, ensuring wide application deployment.
High Visual Quality and Performance
Any visual computing application requiring maximum performance-from 3D animation to CAD to visual simulation-can exploit high-quality, high-performance OpenGL capabilities. These capabilities allow developers in diverse markets such as broadcasting, CAD/CAM/CAE, entertainment, medical imaging, and virtual reality to produce and display incredibly compelling 2D and 3D graphics.
Developer-Driven Advantages
- Industry standard
An independent consortium, the OpenGL Architecture Review Board, guides the OpenGL specification. With broad industry support, OpenGL is the only truly open, vendor-neutral, multiplatform graphics standard. - Stable
OpenGL implementations have been available for more than seven years on a wide variety of platforms. Additions to the specification are well controlled, and proposed updates are announced in time for developers to adopt changes. Backward compatibility requirements ensure that existing applications do not become obsolete. - Reliable and portable
All OpenGL applications produce consistent visual display results on any OpenGL API-compliant hardware, regardless of operating system or windowing system. - Evolving
Because of its thorough and forward-looking design, OpenGL allows new hardware innovations to be accessible through the API via the OpenGL extension mechanism. In this way, innovations appear in the API in a timely fashion, letting application developers and hardware vendors incorporate new features into their normal product release cycles. - Scalable
OpenGL API-based applications can run on systems ranging from consumer electronics to PCs, workstations, and supercomputers. As a result, applications can scale to any class of machine that the developer chooses to target. - Easy to use
OpenGL is well structured with an intuitive design and logical commands. Efficient OpenGL routines typically result in applications with fewer lines of code than those that make up programs generated using other graphics libraries or packages. In addition, OpenGL drivers encapsulate information about the underlying hardware, freeing the application developer from having to design for specific hardware features. - Well-documented
Numerous books have been published about OpenGL, and a great deal of sample code is readily available, making information about OpenGL inexpensive and easy to obtain.
The OpenGL Visualization Programming Pipeline
OpenGL operates on image data as well as geometric primitives.
OpenGL operates on image data as well as geometric primitives.
Simplifies Software Development, Speeds Time-to-Market
OpenGL routines simplify the development of graphics software—from rendering a simple geometric point, line, or filled polygon to the creation of the most complex lighted and texture-mapped NURBS curved surface. OpenGL gives software developers access to geometric and image primitives, display lists, modeling transformations, lighting and texturing, anti-aliasing, blending, and many other features.
Every conforming OpenGL implementation includes the full complement of OpenGL functions. The well-specified OpenGL standard has language bindings for C, C++, Fortran, Ada, and Java. All licensed OpenGL implementations come from a single specification and language binding document and are required to pass a set of conformance tests. Applications utilizing OpenGL functions are easily portable across a wide array of platforms for maximized programmer productivity and shorter time-to-market.
All elements of the OpenGL state—even the contents of the texture memory and the frame buffer—can be obtained by an OpenGL application. OpenGL also supports visualization applications with 2D images treated as types of primitives that can be manipulated just like 3D geometric objects. As shown in the OpenGL visualization programming pipeline diagram above, images and vertices defining geometric primitives are passed through the OpenGL pipeline to the frame buffer.
OpenGL routines simplify the development of graphics software—from rendering a simple geometric point, line, or filled polygon to the creation of the most complex lighted and texture-mapped NURBS curved surface. OpenGL gives software developers access to geometric and image primitives, display lists, modeling transformations, lighting and texturing, anti-aliasing, blending, and many other features.
Every conforming OpenGL implementation includes the full complement of OpenGL functions. The well-specified OpenGL standard has language bindings for C, C++, Fortran, Ada, and Java. All licensed OpenGL implementations come from a single specification and language binding document and are required to pass a set of conformance tests. Applications utilizing OpenGL functions are easily portable across a wide array of platforms for maximized programmer productivity and shorter time-to-market.
All elements of the OpenGL state—even the contents of the texture memory and the frame buffer—can be obtained by an OpenGL application. OpenGL also supports visualization applications with 2D images treated as types of primitives that can be manipulated just like 3D geometric objects. As shown in the OpenGL visualization programming pipeline diagram above, images and vertices defining geometric primitives are passed through the OpenGL pipeline to the frame buffer.
Available Everywhere
Supported on all UNIX® workstations, and shipped standard with every Windows 95/98/2000/NT and MacOS PC, no other graphics API operates on a wider range of hardware platforms and software environments. OpenGL runs on every major operating system including Mac OS, OS/2, UNIX, Windows 95/98, Windows 2000, Windows NT, Linux, OPENStep, and BeOS; it also works with every major windowing system, including Win32, MacOS, Presentation Manager, and X-Window System. OpenGL is callable from Ada, C, C++, Fortran, Python, Perl and Java and offers complete independence from network protocols and topologies.
Supported on all UNIX® workstations, and shipped standard with every Windows 95/98/2000/NT and MacOS PC, no other graphics API operates on a wider range of hardware platforms and software environments. OpenGL runs on every major operating system including Mac OS, OS/2, UNIX, Windows 95/98, Windows 2000, Windows NT, Linux, OPENStep, and BeOS; it also works with every major windowing system, including Win32, MacOS, Presentation Manager, and X-Window System. OpenGL is callable from Ada, C, C++, Fortran, Python, Perl and Java and offers complete independence from network protocols and topologies.